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Abstract 
Actors and other vocal performers vary their speech across the 
continuum of vocal effort to express ideas, emphasize 
thoughts, communicate emotions, and create drama.  They are 
experts at vocal expression. To analyze this range of 
expression across effort levels, we curated a corpus of 
professional actors’ Hamlet soliloquy performances and 
present an acoustic feature set and classification model 
suitable for tracking actors’ expressive speech from extreme to 
extreme – from whispered, to breathy, through modal, to 
resonant speech. 
Index Terms: voice quality, effort levels, acoustic correlates, 
expressive speech, whispered voice, breathy voice, projected 
voice, resonant voice, paralingual.  

1. Introduction 
Each actor who performs the famous Hamlet soliloquy from 
Act III Scene I of Shakespeare’s play speaks the same words, 
which begin, “To be, or not to be…” Each actor speaks exactly 
the same words, but communicates something different, 
because the expressive qualities of each speaker are different. 
A quick survey of just five professional actors performing the 
soliloquy (David Tennant, Kenneth Branagh, Derek Jacobi, 
Mel Gibson, and Richard Burton [16-20]) revealed striking 
differences in speaking rate, pitch variance, use of silence, 
phrase groupings, accents, and vocal quality (particularly in 
the use of whispers, breathiness, vocal fry, and projected 
speech). Expressive difference characterizes this kind of vocal 
performance, both within speaker and across speakers 
(Shakespearian actors are experts at vocal expression). To 
explore these differences, we conducted an exploratory study 
to find out what features the casual listener would perceive in 
expressive speech. We presented Mechanical Turk workers 
with a random sampling of Hamlet soliloquy audio clips from 
these speakers, and asked workers to provide one or more 
keywords describing the expression in the voice (not the word 
content). Listeners could provide any keywords which came to 
mind, but most often provided keywords describing emotion, 
changes in loudness, and various aspects of vocal effort (e.g., 
whispering, breathiness, and “ringing,” or resonant/projected 
speech). Because of the sensitivity of listeners to these 
features, particularly the elements of vocal effort, we asked the 
following research question: What acoustic features can 
distinguish each of four levels of vocal effort (whispering, 
breathiness, modal speech, and resonant/projected speech) 
in male actors’ expressive speech? 

To explore this question, we held the spoken text constant 
by curating a corpus of performances of the Act III Scene I 
Hamlet soliloquy, and studied the corpus across the continuum 

of effort, from whispering, through breathiness and modal 
speech, to resonant speech.  The audio content came from 
movies and stage performances, which were recorded in 
varying environments. We excluded sections from the corpus 
which had significant sonic interference, such as music, high 
levels of background noise, sound effects, competing speech, 
and excessively reverberant environments (where echoes or 
“slap-back” was apparent, or effects such as a loud speaker in 
a small cave would create). 

Previous work has found that normalized autocorrelation 
in the F0 range produces a strong maximum at the 
fundamental period, and spikes at regular intervals, which are 
both lacking in whispered speech [2]. Overall, whispered 
speech is noise-like and aperiodic in comparison to voiced 
speech, and measures of spectral entropy in various bands 
reflect this difference.  Entropy ratios, particularly ratios of 
high to low frequency spectral entropy (e.g., 2800-3000 vs 
450-650 Hz), show significant voicing-dependent differences; 
while the use of MFCC features, standard for speech 
processing, yields inferior results when compared with 
spectral entropy and spectral tilt [25]. Other measures which 
can reveal the aperiodicity of whispered speech and the 
spectral tilt differences include the first and second reflection 
coefficients (RC1 and RC2) and noncausal pitch prediction 
gain [5]. Reduced spectral tilt is a frequent observation in 
unvoiced speech [15,25], along with shifts in formant 
frequencies [13], differences in the ratios of high-frequency to 
low-frequency energy (which captures tilt) [6,12,21,24], and 
zero crossing rate (ZCR). The glottal component in the voice 
is useful, too. The residual signal, extracted via LPC analysis, 
models the glottal excitation, and its maximum autocorrelation 
is smaller for nonvoiced speech than for voiced speech [6,21]. 

Previous work has also addressed breathy vs. modal voice, 
and found that the difference between the first two harmonics 
(H1-H2), the difference between the first formant and the first 
harmonic (H1-A1), and the difference between the third 
formant and the first harmonic (H1-A3) may provide 
separation between breathy and modal vowels [10,23]. The 
H1-H2 cue was stronger than the other cues in a study of clear 
vs. breathy vowels in the Khmer dialect, but the authors also 
say that the contrast may be between a tense vs. lax voice, and 
not a breathy vs. modal voice [23]. They also observed that the 
H1-H2 difference between breathy and modal voice within 
speaker was measurable, but the H1-H2 value for one 
speaker’s breathiness could be the value for another speaker’s 
modal speech. This finding raises questions about the un-
normalized application of these kinds of features across a set 
of voices with significant variance across speakers, as we have 
across our Hamlet actors. Other studies found that pitch and 
amplitude perturbations are higher for breathy voices in 
comparison to modal voices, and that glottal excitation 
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features (abruptness of glottal closure, glottal pulse width and 
skewness, and the turbulent noise component) could 
distinguish breathy and modal voices [7]. 

Studies comparing resonant with modal voice production 
suggest that speakers produce a resonant tone via “first 
formant alignment,” which produces a higher harmonic 
content in the portion of the spectra corresponding to the first 
formant (4-7dB stronger). Also, resonant voice had stronger 
harmonics in the 2.0-3.5 kHz band [22]. Actors, train to 
produce resonant voice. Researchers studying the difference 
between actors’ non-resonant and resonant voices (via the 
Lessac Y-Buzz technique) found a reduction in the difference 
between the first formant and second harmonic in men [3].  

Research which examines differences in phonation types 
(breathy/modal/pressed) used features characterizing glottal 
function [4,9], and found low-frequency spectral density 
(LFSD) to reflect the differences in open quotient and the 
corresponding increase in low frequency energy in breathy 
voices [9]. Amplitude quotient (AQ) and normalized 
amplitude quotient (NAQ) of the glottal pulse were superior 
separators, along with harmonic difference H1-H2 [1,9,14], 
closing quotient, quasi open quotient, and brightness [1].  

Previous studies of voice quality are often motivated by 
considerations of speech pathology [8,11], phonology [9], or 
speaker identifiability in speech synthesis [10]; and therefore, 
no previous study considers a continuum of expressive speech 
that includes within-speaker and across-speaker distinctions 
among whispered, breathy, and resonant voice qualities.  
There are significant, practical difficulties in the analysis of 
real-world expressive, acted speech, which we address in this 
paper. First, acted speech is characterized by greater than usual 
difference both within speaker and across speakers. In 
comparison to spontaneous or read speech, it has exaggerated 
extremes of pitch, volume, speaking rate, phoneme duration, 
and vocal quality. Second, production of quality acted speech 
requires expertise. Existing corpora do not contain 
representative samples of expressive, acted speech; and it is 
not reasonable to create a suitable corpus from untrained 
voices. Third, when suitable samples are found, people with 
expertise to hear the expressive differences must code it. Our 
primary contribution is a feature set and classifier suitable for 
parsing the continuum of effort levels, from whispered speech 
to resonant speech, which will function across widely-varying 
speaking styles. In addition, the result is robust enough to 
function across voice recordings from varying environments. 

2. The Hamlet Corpus 
We selected expert performances of the Hamlet soliloquy (Act 
III, Scene I) by Mel Gibson, Derek Jacobi, Richard Burton, 
David Tennant, and Kenneth Branagh [16-20]. These speakers 
were selected for their collective difference in expressive style 
across speaker and for their professional acting and speaking 
ability. This small number of speakers provides a large range 
of expression for analysis. For example, in just the first 
sentence of the soliloquy, Jacobi’s voice ranges from breathy 
to resonant, soft to loud, and ranges in pitch over almost an 
octave. Tennant’s voice is breathy, soft, and gently inflected, 
while Burton’s voice is modal and flat in comparison. 
Branagh’s voice is all angst, and ranges from breathy-modal in 
the first phrase, to a chilling whisper in the second phrase. 
Gibson’s speech is rapid, his pauses, minimal, and tone, 
almost businesslike. Each speaker’s pitch and volume 
variation, accent points, and phrasing are different, and that is 

just a high-level observation over just the first sentence. This 
range is characteristic of actors’ speech. One expert hand-
coded each performance in our corpus to the syllable level 
with the 4 conditions (whispered, breathy, modal, and 
resonant). By our definition, modal speech had an average 
conversational quality, whispered speech had no voicing, 
breathy speech had weak voicing with an airy quality, and 
resonant voice had a ringing, or projected quality in 
comparison to modal voice.  To validate the coding, we 
randomly selected 20 samples from each condition across all 
the speakers, and asked a second expert to classify the samples 
as whispered, breathy, modal, or resonant speech. Before 
running the experiment, we gave our experts the definition of 
each type of speech, and demonstrated it with example 
recordings. We reached 95%, 85%, 65%, and 90% 
classification agreement over the whispered, breathy, modal, 
and resonant conditions, respectively, with 85% agreement 
overall, and a Cohen’s kappa of 0.8.   

To prepare the corpus for analysis, we first downsampled 
it to 16 kHz, normalized the signal within each speaker, and 
excluded portions with music, excessive noise, sound effects, 
interfering voices or background, or significant reverb (with 
noticeable echo or delay). Next, we extracted all of the vowel 
sounds which were at least 60msec long. A forced aligner was 
helpful in this process, but we overrode it manually when it 
made errors. We used a window length of 60msec on all 
features except LFSD which required a smaller 10msec frame 
[9], applied a Hamming window to each slice, and advanced 
the window by 15msec over the range of each vowel sample. 
We experimented with a variety of different window lengths, 
and found that a window length of 50-65 msec worked best 
with our feature set (except LFSD).  At the end of the process, 
the Hamlet corpus had a total of 83 whispered, 329 breathy, 
353 modal, and 276 resonant speech samples across the range 
of vowels in the English language.  The whispered speech had 
the fewest samples simply because the actors used it sparingly. 

3. Analysis of Features 
We selected features for investigation based on the literature 
and our empirical observations of the characteristics of each 
condition across the speakers (see Figure 1 for representative 
spectra). Whispered speech is noiselike, aperiodic, has high-
frequency components, and lacks a strong component where 
F0 would be.  Breathy speech has a strong F0, a small number 
of significant harmonics (often 1-4 spikes on F0 harmonics), 
and in some cases, some low-energy harmonics at higher 
frequencies. In general, breathy speech is periodic and lacks 
significant high-frequency energy. Modal speech is periodic 
with many multiples of F0, with the presence of formants.  
Note that its strongest components are below about 500-600 
Hz. Resonant speech is still periodic, but it differs from modal 
speech in that it has proportionally more high-frequency 
energy, has its strongest components above 500 Hz, has more 
overall energy, and shows stronger overall formant 
representation. We observed consistent differences across 
conditions in the frequency bands 0-300, 300-700, 600-1000, 
1000-2000, and 2000-4500 Hz. In general, the 0-300 Hz band 
showed differences in F0 and glottal formant representation 
across conditions, the 0-900 Hz bands contained the most 
significant differences in the amplitude and periodic excitation 
of F0 and its nearby pitch harmonics, and the bands above 
1000 Hz contained difference in formants, high-frequency 
harmonics, and high-frequency noise. We selected features for 



exploration because they had the documented ability to 
provide separation between at least two of the conditions, 
could leverage the characteristic differences across conditions 
that we observed empirically, would be robust to uncontrolled 
recording environments, would work across a wide variance of 
speaker expressivity, and would introduce the least amount of 
confusion for classifying the 4 distinct conditions together. We 
also preferred features that could be computationally efficient 
enough to use in real time application development. 

   

      
Figure 1: Representative spectra from each effort level 
type. Top left: Whispered speech is noise-like, flat, and 
distributed, with high-frequency energy. Top right: 
Breathy speech is focused around F0 with no upper 
harmonics.  Bottom left: Modal speech has F0 with 
harmonic multiples, and high energy around F1. 
Bottom right: Resonant speech has relatively weak F0, 
and high energy around F1 and F2. 

Our candidate features included 1) Zero Crossing Rate 
(ZCR), 2) Number of Significant Spectral Peaks (PK), 3) 
Normalized Autocorrelation Maximum in the pitch period 
range 5-60msec (AC), 4) Log Low-frequency Spectral Density 
(LFSD), 5) Entropy 50-300 Hz (H1), 6) Entropy 300-700 Hz 
(H2), 7) Entropy 600-950 Hz (H3), 8) Entropy 1000-2000 Hz 
(H4), 9) Entropy 2000-4500 Hz (H5), 10) Entropy 300-1000 
Hz (H6), 11) Entropy 300-4500 Hz (H7), 12) Entropy 4500-
8000 Hz (H8), 13) Normalized Power Ratio 50-900/50-600 Hz 
(PR1), 14) Entropy Ratio 50-300/400-600 Hz (HR1), 15) 
Entropy Ratio 450-650/2800-3000 (HR2), 16) Spectral Tilt 
(TILT), and 17) Difference between the First Two Harmonics 
(H1-H2).  We selected the first three features to detect voicing, 
the frequency bands to align with observed spectral 
differences across conditions, entropy for its robustness across 
a widely-varying set of speaking styles and ability to measure 
the degree to which a sound is noise-like or tone-like, LFSD 
for its potential to reflect glottal and open quotient differences 
across conditions, and power and entropy ratios to magnify 
spectral differences across conditions.  

We calculated entropy (H) [25], entropy ratio (HR) [25], 
LFSD [9] as described in the literature, and additionally took 
the log of LFSD to enhance separation. Normalized power 
ratio (PR) is similar to spectral density, except that we use the 
magnitude squared of the spectral components, and normalize 
each power value by the sum of the power over the spectral 
range.  Then, we take the ratio of the normalized power in the 
high band of interest to the normalized power in the low band 
of interest. For peak detection, we first zeroed out frequencies 

which were less than 0.5% of the maximum peak, clustered 
groups of adjacent frequency spikes together, and extracted the 
maximum frequency spike from each cluster. 

 

 

 
Figure 2: Analysis of features across the continuum of 
whisper, breathy, modal, and resonant speech. Square 
markers show the mean at each condition, and error 
bars show a 2-sigma distribution around the mean. 

Figure 2 summarizes the characteristics of each feature 
across conditions.  ZCR, PK, AC, and H1 provided the best 
separation between whispered speech and the rest. The 
difference between breathy and modal speech was the most 
difficult distinction to draw with our feature set, but was 
provided to a certain extent by normalized autocorrelation and 
by H7. We expected LFSD to provide strong breathy-modal 
separation, but it did not perform as well as the entropy 
features. It is interesting to observe that the best voiced-
unvoiced features introduced confusion for the breathy-modal 
distinction. The best modal-resonant separators were AC, H2, 
H3, H4, H5, and H6; and LFSD provided secondary 
separation. The spectral tilt and H1-H2 features did not 
provide the separation we expected for the Hamlet corpus.  
Tilt showed only weak separation between voiced and 



unvoiced speech, and did not distinguish across the other 
conditions. The harmonic difference (H1-H2) provided limited 
differentiation between modal and resonant conditions, and 
also did not distinguish well across the remaining conditions.  

4. Methods and Experiments 
To address our research question, we trained a 4-way decision 
tree classifier on the Hamlet corpus, pruned the result to guard 
against overfitting and tune performance, and used 4-fold 
cross-validation to validate our approach.  Figure 3 shows 
precision and recall for an assortment of 4-way classifiers over 
the best performing feature subsets and single features. By 
precision, we mean the fraction of retrieved (recognized) 
instances that were relevant (correctly recognized); and by 
recall, we mean the fraction of relevant (available) cases that 
were retrieved (recognized). The best 4-way classifier had a 
76% overall accuracy; while binary classifiers which used this 
best-performing feature set had 83-98% accuracy (Table 1).  

 

    

      

         

      
Figure 3: Performance of 4-Way Decision Tree 
Classifiers for feature combinations & single features 
(W=whisper, B=breathy, M=modal, R=Resonant). 

Condition          p/r Other                  p/r Accuracy 
Whispered        99/73 Non-whispered  98/99      98 
Breathy            99/67 Non-breathy      87/99          90 
Modal              74/74 Non-modal        87/87 83 
Resonant         71/76 Non-resonant    91/89     86 

Table 1: Performance of Binary Decision Tree 
Classifiers for feature set ZCR, PK, PR1, HR1, H1 H3, 
H6, and  H7. Precision (p), recall (r), and accuracy 
are in percent. 

5. Discussion and Conclusions 
Our research question asked what acoustic features could 
distinguish across four levels of vocal effort, from whispering, 
to breathiness, to modal speech, to resonant speech.  We 
explored a range of features which the literature suggested 
could provide separation, and added to this list our empirical 
observations of representative spectra across each condition. 
We observed differences across conditions in the bands 0-300, 
300-700, 600- 950, 1000-2000, and 2000-4500 Hz within the 
Hamlet corpus, and found that each condition had one or more 
characteristic spectral “fingerprints”. Entropy measurements 
within each of these bands captured the important spectral 
relationships, were robust to varied recording conditions, and 
functioned well across speakers and the range of speaker 
expression.  Some of the entropy features, such as H3, 
provided good general separation, but we found that using a 
collection of entropy features together provided the best 
results. Entropy ratios, too, could be used to highlight 
differences between two bands.  Normalized power ratios were 
also useful, but in general did not separate the conditions as 
well as entropy or entropy ratio features. 

The spectral tilt features (TILT and H1-H2) and LFSD did 
not provide the expected separation across conditions over the 
Hamlet corpus; we suspect that this result reflects the character 
of expressive voices, which vary greatly both within and 
across speaker. Expressive speech has more variance than a 
corpus in which a similar population reads text or speaks 
phonemes. Variance, difference, aperiodicity, and extremes 
characterize expressive speech, and our human perceptual 
system is wired to perceive it. For these reasons, we seek to 
study and emphasize these differences in our future work, not 
normalize them away. Exploring models of expressive speech 
that include the excitation and highlight differences may help. 

While our results were generally positive, we believe we 
could improve them by further exploring and understanding 
perception of the different conditions.  We suspect that the 
perceptual label “breathy,” for example, is a large umbrella 
over a collection of breathy subtypes which have different 
acoustic fingerprints. It is also possible that the human 
perception of “breathy” depends on the context, so that the 
same sound may be perceived as “breathy” when surrounded 
by one kind of speech and “modal” when surrounded by 
another kind of context, or when taken out of context.  
Furthermore, the distinctions do lie on a continuum, and the 
distance between a “strong breathy” and a “soft modal” may 
be acoustically and perceptually small and variant.  

We also think that comparing male and female actors’ 
voices would be useful, as would extending our scope into 
other phonation types (e.g., pressed, yelling) and other 
frequently-perceived features of vocal expression such as 
emotion and vocal emphasis. Finally, we believe that the study 
of acted expressive speech could inform a range of 
applications, particularly those in the areas of speech therapy, 
vocal performance coaching, language learning, medical 
diagnostics, multimodal art, and automated voice agents. 
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